On Operator Fields in the Bundle of Dirac Spinors

نویسندگان

  • R. A. Sharipov
  • R. A. SHARIPOV
چکیده

The bundle of Dirac spinors is used for describing particles with half-integer spin in general relativity and in quantum field theory. It is a special four-dimensional complex vector-bundle over the space-time manifold M . Let’s remind that the space-time manifold M itself is a four-dimensional real manifold equipped with a Minkowski type metric g of the signature (+,−,−,−). Apart from g, the spacetime manifoldM is equipped with two other geometric structures — the orientation and the polarization. The orientation distinguishes right quadruples of tangent vectors from left ones, while the polarization distinguishes future and past half light cones in tangent spaces at each point of M . The bundle of Dirac spinors is denoted DM . It is equipped with four basic spin-tensorial fields in addition to g. They are presented in the following table.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extrinsic Bounds for Eigenvalues of the Dirac Operator

We derive upper eigenvalue bounds for the Dirac operator of a closed hypersurface in a manifold with Killing spinors such as Euclidean space, spheres or hyperbolic space. The bounds involve the Willmore functional. Relations with the Willmore inequality are briefly discussed. In higher codimension we obtain bounds on the eigenvalues of the Dirac operator of the submanifold twisted with the spin...

متن کامل

Subelliptic Spin C Dirac operators, II Basic Estimates

We assume that the manifold with boundary, X, has a SpinC-structure with spinor bundle S /. Along the boundary, this structure agrees with the structure defined by an infinite order integrable almost complex structure and the metric is Kähler. In this case the SpinC-Dirac operator ð agrees with ∂̄ + ∂̄∗ along the boundary. The induced CR-structure on bX is integrable and either strictly pseudocon...

متن کامل

Non–trivial Harmonic Spinors on Generic Algebraic Surfaces

For every closed Riemannian spin manifold its Dirac operator is a selfadjoint linear elliptic operator acting on sections of the spinor bundle. Hitchin [3] proved that the dimension of its kernel, the space of harmonic spinors, only depends on the conformal class of the Riemannian metric, and that it varies with the conformal class. However, the variation is not understood. Investigating this v...

متن کامل

Twistor Spinors on Lorentzian Manifolds, Cr-geometry and Feeerman Spaces

The paper deals with twistor spinors on Lorentzian manifolds. In particular , we explain a relation between a certain class of Lorentzian twistor spinors and the Feeerman spaces of strictly pseudoconvex spin manifolds which appear in CR-geometry. Let (M n;k ; g) be a n-dimensional smooth semi-Riemannian spin manifold of index k with the spinor bundle S. There are two conformally covariant diffe...

متن کامل

Differentiation along Multivector Fields

The Lie derivation of multivector fields along multivector fields has been introduced by Schouten (see cite{Sc, S}), and studdied for example in cite{M} and cite{I}. In the present paper we define the Lie derivation of differential forms along multivector fields, and we extend this concept to covariant derivation on tangent bundles and vector bundles, and find natural relations between them and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008